5,068 research outputs found

    Millimeter wave propagation measurements using the ATS 5 satellite

    Get PDF
    The ATS 5 millimeter wave propagation experiment determines long- and short-term attenuation statistics of operational millimeter wavelength earthspace links as functions of defined meteorological conditions. A preliminary analysis of results with 15 GHz downlink and 32 GHz uplink frequency bands indicates that both frequency bands exhibit an excellent potential for utilization in reliable high data rate earth-space communications systems

    ATS-5 millimeter wave propagation measurements

    Get PDF
    Long term experimental measurements to determine the propagation characteristics of 15 and 32 GHz earth-space links and to evaluate performance characteristics of operational millimeter wave systems are reported. The ATS 5 millimeter wave experimental link experienced attenuation and fading characteristics as a function of rainfall rate and other meteorological parameters. A method of site selection for the lowest attenuation rainfall rate improved reception tremendously

    Traveling-wave tube circuit simplifies microwave relay

    Get PDF
    Circuit with a sawtooth-modulated traveling-wave tube, which acts as a frequency converter and as an amplifier, simplifies microwave transmission. Lower power losses and reduced size and weight are also realized in this circuit

    Traveling wave tube development for a serrodyne re-entrant amplifier

    Get PDF
    Traveling wave tube development for serrodyne re-entrant amplifie

    Rearrangement of p, p1 Disubstituted Benzils

    Get PDF
    Author Institution: Department of Chemistry, Miami University, Oxford, Ohi

    Indoor radon survey in university buildings: a case study of Sapienza - University of Rome

    Get PDF
    The indoor radon concentration in underground workplaces pertaining to Sapienza – University of Rome have been monitored since the 90’s according to prescription of Italian Legislative Decree 230/95. In the last years, the recommendations contained in the Council Directive 2013/59/Euratom have shifted the focus to all indoor exposure situations by promoting actions to identify workplaces and dwellings with radon concentrations exceeding the reference level of 300 Bq/m3. In response to the upcoming transposition into national legislation, Sapienza has promoted the first Italian survey addressing workplaces in university buildings, regardless of the position with respect to the ground floor. The survey has interested more than three hundred workplaces, i.e. administration and professors’ offices, research and educational laboratories, conference rooms and classrooms, distributed in fifteen different buildings. Places monitored are strongly heterogeneous in terms of users’ habit, occupancy pattern and building characteristics. The influence of these parameters into seasonal variation have been addressed by organizing the survey in four quarters. The indoor radon concentration is measured by solid state nuclear track detectors, CR39. The aim of the paper is to present features, methods and intermediate results of the survey. The work, relying on the analysis of previous measurements interesting underground workplaces, focuses on methodology followed during all the preliminary and preparatory phases: active measurements by ionization chamber radon continuous monitor, radon progeny equilibrium factor estimations by radon daughters monitor, strategies for occupants’ awareness, positioning protocol and provisions to maximize representativity of results

    Radio-wave propagation for space communications systems

    Get PDF
    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations

    Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite

    Get PDF
    Studies at 11 locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques using the Applications Technology Satellite-6(ATS-6). In addition to direct measurements on the 20- and 30-GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment were presented. The first section describes the experiment objectives, flight hardware, and modes of operation. The remaining six sections present papers prepared by the major participating organizations in the experiment. The papers present a comprehensive summary of the significant results of the initial 11 months of ATS-6 experiment measurements and related radiometric, radar, and radio-meteorology studies

    Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite

    Get PDF
    The ATS-6 millimeter wave experiment, provided the first direct measurements of 20 and 30 GHz earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques. In addition to direct measurements on the 20 and 30 GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment from the major participating organizations are presented

    Earth-satellite propagation above GHz: Papers from the 1972 spring URSI session on experiments utilizing the ATS-5 satellite

    Get PDF
    Papers are reported from the Special Session on Earth-Satellite Propagation Above 10 GHz, presented at The 1972 Spring Meeting of the United States National Committee, International Union of Radio Science, April 1972, Washington, D. C. This session was devoted to propagation measurements associated with the Applications Technology Satellite (ATS-5), which provided the first operational earth-space links at frequencies above 15 GHz. A comprehensive summary is presented of the major results of the ATS-5 experiment measurements and related radiometric, radar and meteorological studies. The papers are organized around seven selected areas of interest, with the results of the various investigators combined into a single paper presented by a principal author for that area. A comprehensive report is provided on the results of the ATS-5 satellite to earth transmissions. A complete list of published reports and presentations related to the ATS-5 Millimeter Wave Experiment is included
    • …
    corecore